Search results for "skeletal muscle"

showing 10 items of 430 documents

Systemic blockade of ACVR2B ligands prevents chemotherapy-induced muscle wasting by restoring muscle protein synthesis without affecting oxidative ca…

2016

AbstractDoxorubicin is a widely used and effective chemotherapy drug. However, cardiac and skeletal muscle toxicity of doxorubicin limits its use. Inhibiting myostatin/activin signalling can prevent muscle atrophy, but its effects in chemotherapy-induced muscle wasting are unknown. In the present study we investigated the effects of doxorubicin administration alone or combined with activin receptor ligand pathway blockade by soluble activin receptor IIB (sACVR2B-Fc). Doxorubicin administration decreased body mass, muscle size and bone mineral density/content in mice. However, these effects were prevented by sACVR2B-Fc administration. Unlike in many other wasting situations, doxorubicin indu…

0301 basic medicineACUTE DOXORUBICIN CARDIOTOXICITYEXPRESSIONmedicine.medical_specialtyMDX MICEhuumeetlihaksetMyostatinProtein degradationEXERCISE PROTECTSMYOSTATINArticledrugs03 medical and health sciencesInternal medicinemedicineDoxorubicinCANCER CACHEXIApreclinical researchWastingaineenvaihduntaMultidisciplinaryCARDIOMYOPATHYbiologyRECEPTORbusiness.industrychemotheraphyta1182Skeletal muscleta3141Activin receptorta3122Muscle atrophy3. Good health030104 developmental biologyEndocrinologymedicine.anatomical_structurebiology.proteinSKELETAL-MUSCLEHEARTmuscles3111 Biomedicinemedicine.symptombusinessmetabolismACVR2Bmedicine.drug
researchProduct

Human skeletal muscle type 1 fibre distribution and response of stress-sensing proteins along the titin molecule after submaximal exhaustive exercise.

2017

Early responses of stress-sensing proteins, muscle LIM protein (MLP), ankyrin repeat proteins (Ankrd1/CARP and Ankrd2/Arpp) and muscle-specific RING finger proteins (MuRF1 and MuRF2), along the titin molecule were investigated in the present experiment after submaximal exhaustive exercise. Ten healthy men performed continuous drop jumping unilaterally on a sledge apparatus with a submaximal height until complete exhaustion. Five stress-sensing proteins were analysed by mRNA measurements from biopsies obtained immediately and 3 h after the exercise from exercised vastus lateralis muscle while control biopsies were obtained from non-exercised legs before the exercise. Decreased maximal jump h…

0301 basic medicineANKRD2AdultMalemedicine.medical_specialtyANKRD1HistologyAdolescentVastus lateralis musclePhysical ExertionMuscle Proteinslihaksetmedicine.disease_causetuki- ja liikuntaelimet03 medical and health sciencesYoung Adult0302 clinical medicineJumpingHsp27Internal medicinemedicinestress-sensing proteinsHumanstitinConnectinMolecular BiologyExerciseurheiluvammatbiologySkeletal muscleCell BiologyAnatomyhuman skeletal muscleMedical Laboratory Technology030104 developmental biologymedicine.anatomical_structureEndocrinologyMuscle Fibers Slow-Twitchbiology.proteinexercise induced muscle damageTitinAnkyrin repeat030217 neurology & neurosurgeryHistochemistry and cell biology
researchProduct

In vivo muscle morphology comparison in post-stroke survivors using ultrasonography and diffusion tensor imaging.

2019

AbstractSkeletal muscle architecture significantly influences the performance capacity of a muscle. A DTI-based method has been recently considered as a new reference standard to validate measurement of muscle structure in vivo. This study sought to quantify muscle architecture parameters such as fascicle length (FL), pennation angle (PA) and muscle thickness (tm) in post-stroke patients using diffusion tensor imaging (DTI) and to quantitatively compare the differences with 2D ultrasonography (US) and DTI. Muscle fascicles were reconstructed to examine the anatomy of the medial gastrocnemius, posterior soleus and tibialis anterior in seven stroke survivors using US- and DTI-based techniques…

0301 basic medicineAdultMaleFysiologiPhysiologylcsh:MedicineSkeletal musclelihaksettuki- ja liikuntaelimetArticle03 medical and health sciencesMuscle morphology0302 clinical medicinemorfologiaIn vivomedicineHumansin vivo -menetelmädiffuusiotensorikuvausSurvivorsskeletal musclelcsh:ScienceMuscle SkeletalAgedUltrasonographyMultidisciplinarybusiness.industrylcsh:RSkeletal muscleMiddle AgedIndividual leveldiffusion tensor imagingStroke030104 developmental biologymedicine.anatomical_structureDiffusion Tensor ImagingPost strokelcsh:QFemaleUltrasonographyMuscle architecturebusinessBiomedical engineering030217 neurology & neurosurgeryBiomedical engineeringDiffusion MRIScientific reports
researchProduct

Modulating Oxidant Levels to Promote Healthy Aging

2020

Significance: Free radicals although originally thought of as damaging molecules, inevitable side effects of the utilization of oxygen by cells, are now considered as signals that by modifying, among others, the thiol-disulfide balance regulate many cell processes from metabolism to cell cycle. Recent Advances: This review discusses the importance of the modulation of the oxidant levels through physiological strategies such as physical exercise or genetic manipulations such as the overexpression of antioxidant enzymes, in the promotion of healthy aging. Critical Issues: We have divided the review into five different sections. In the first two sections of the article "Oxidants are signals" a…

0301 basic medicineAgingAntioxidantPhysiologymedia_common.quotation_subjectmedicine.medical_treatment[SDV]Life Sciences [q-bio]Clinical BiochemistryPhysical exerciseMitochondrionBiologyBiochemistryGene Expression Regulation EnzymologicHealthy Aging03 medical and health sciencesmedicineAnimalsHumansskeletal muscleMuscle SkeletalMolecular BiologyGeneral Environmental Sciencemedia_commonchemistry.chemical_classificationReactive oxygen species030102 biochemistry & molecular biologyexerciseHormesisLongevitySkeletal muscleCell BiologyOxidantshealth spanCell biologymitochondriaOxidative Stress030104 developmental biologymedicine.anatomical_structurechemistryMitochondrial biogenesisglucose-6-phosphate dehydrogenaseGeneral Earth and Planetary SciencesReactive Oxygen SpeciesOxidation-Reduction
researchProduct

Intensified mitophagy in skeletal muscle with aging is downregulated by PGC-1alpha overexpression in vivo.

2018

Mitochondrial dysfunction plays an important role in the etiology of age-related muscle atrophy known as sarcopenia. PGC-1α is positioned at the center of crosstalk in regulating mitochondrial quality control, but its role in mitophagy in aged skeletal muscle is currently unclear. The present study investigated the effects of aging and PGC-1α overexpression via in vivo DNA transfection on key mitophagy protein markers, as well as mitochondrial dynamics related proteins, metabolic function and antioxidant capacity in mouse muscle. C57BL/6J mice at the age of 2 mo (young, Y; N = 14) and 24 mo (old, O; N = 14) were transfected in vivo with either PGC-1α DNA (OE, N = 7) or GFP (N = 7) into the …

0301 basic medicineAgingUbiquitin-Protein LigasesPINK1MitochondrionBiochemistryMitochondrial DynamicsGTP Phosphohydrolases03 medical and health sciencesMice0302 clinical medicineIn vivoPhysiology (medical)MitophagymedicineAnimalsMuscle SkeletalChemistryMitophagySkeletal muscleTransfectionmedicine.diseasePeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaMuscle atrophyCell biologyMitochondriaOxidative Stress030104 developmental biologymedicine.anatomical_structureGene Expression RegulationSarcopeniaBeclin-1medicine.symptomProtein Kinases030217 neurology & neurosurgeryFree radical biologymedicine
researchProduct

Interactive effects of aging and aerobic capacity on energy metabolism-related metabolites of serum, skeletal muscle, and white adipose tissue

2021

ABSTRACTAerobic capacity is a strong predictor of longevity. With aging, aerobic capacity decreases concomitantly with changes in whole body metabolism leading to increased disease risk. To address the role of aerobic capacity, aging and their interaction on metabolism, we utilized rat models of low and high intrinsic aerobic capacity (LCRs/HCRs) and assessed the metabolomics of serum, muscle, and white adipose tissue (WAT). We compared LCRs and HCRs at two time points: Young rats were sacrificed at 9 months, and old rats were sacrificed at 21 months. Targeted and semi-quantitative metabolomics analysis was performed on ultra-pressure Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS)…

0301 basic medicineAgingWhite adipose tissue030204 cardiovascular system & hematologychemistry.chemical_compound0302 clinical medicineTandem Mass SpectrometryMetabolitesaineenvaihduntametabolitesALL-CAUSE MORTALITY2. Zero hungerchemistry.chemical_classification0303 health sciencesmetabolomicsAmino acidmedicine.anatomical_structureCARDIOVASCULAR-DISEASEOBESITYaerobinen suorituskykyOriginal ArticleCARDIORESPIRATORY FITNESSARTIFICIAL SELECTIONmedicine.medical_specialtyAdipose Tissue WhiteEXERCISErasva-aineenvaihdunta03 medical and health sciencesMetabolomicsFATNESSAerobic capacityInternal medicinemedicineAnimalsMetabolomicsBeta (finance)Muscle SkeletalAerobic capacity030304 developmental biologyAMINO-ACID-METABOLISMFatty acid metabolismagingSkeletal muscleLipid metabolismCardiorespiratory fitnessMetabolismRatsaerobic capacityikääntyminen030104 developmental biologyEndocrinologyPHYSICAL-ACTIVITYchemistryFUEL SELECTIONaineenvaihduntatuotteet3111 Biomedicinekoe-eläinmallitGeriatrics and GerontologyEnergy MetabolismChromatography Liquid
researchProduct

Effects of intrinsic aerobic capacity, aging and voluntary running on skeletal muscle sirtuins and heat shock proteins

2016

Aim Sirtuins are proteins that connect energy metabolism, oxidative stress and aging. Expression of heat shock proteins (Hsps) is regulated by heat shock factors (HSFs) in response to various environmental and physiological stresses, such as oxidative stress. Oxidative stress accumulates during aging which makes cells more prone to DNA damage. Although many experimental animal models have been designed to study the effects of knockdown or overexpression of sirtuins, HSFs and Hsps, little is known about how aging per se affects their expression. Here we study the impact of intrinsic aerobic capacity, aging and voluntary exercise on the levels of sirtuins, HSFs and Hsps in skeletal muscle. Me…

0301 basic medicineAgingmedicine.medical_specialtyphysical activityCitrate (si)-SynthaseOxidative phosphorylationta3111medicine.disease_causeBiochemistryRunning03 medical and health sciences0302 clinical medicineEndocrinologyPhysical Conditioning AnimalHeat shock proteinInternal medicineGeneticsmedicineAnimalsSirtuinsAerobic exerciseta318skeletal muscleta315Muscle Skeletaloksidatiivinen stressiMolecular BiologyHeat-Shock ProteinsAerobic capacitybiologyagingBody WeightSkeletal muscleRats Inbred StrainsCell BiologyHsp70sirtuinOxidative Stress030104 developmental biologymedicine.anatomical_structureEndocrinologySirtuinbiology.proteinFemaleEnergy Intake030217 neurology & neurosurgeryOxidative stressExperimental Gerontology
researchProduct

Estrogenic regulation of skeletal muscle proteome : a study of premenopausal women and postmenopausal MZ cotwins discordant for hormonal therapy

2017

Female middle age is characterized by a decline in skeletal muscle mass and performance, predisposing women to sarcopenia, functional limitations, and metabolic dysfunction as they age. Menopausal loss of ovarian function leading to low circulating level of 17b-estradiol has been suggested as a contributing factor to aging-related muscle deterioration. However, the underlying molecular mechanisms remain largely unknown and thus far androgens have been considered as a major anabolic hormone for skeletal muscle. We utilized muscle samples from 24 pre- and postmenopausal women to establish proteome-wide profiles, associated with the difference in age (30–34 years old vs. 54– 62 years old), men…

0301 basic medicineAgingnaisetlabel‐free protein quantitationProteomeAnabolismvaihdevuodetmedicine.medical_treatmentTwinsmenopausenano‐LC‐HD‐MSElihakset0302 clinical medicineSTRENGTHBRAIN315 Sport and fitness sciencesta315luustoINHIBITORHormone replacement therapy (menopause)ta3142MITOCHONDRIAL BIOGENESISMiddle AgedPostmenopauseMenopauseREPLACEMENThormone replacement therapyEditorialmedicine.anatomical_structurehormonihoitoHormonal therapyOriginal ArticleFemalemuscleswomenAdultestrogeenitnano-LC-HD-MSEEXPRESSIONmedicine.medical_specialtyBiologyestrogenic regulation03 medical and health sciencesmitochondrial functionInternal medicinemedicineHumansMuscle Skeletallabel-free protein quantitationmuscle proteomeAgedSkeletal muscleEstrogenslabel-free proteinquantitationOriginal ArticlesCell Biologyfunctional annotationmedicine.diseaseMiddle ageMONOZYGOTIC TWIN PAIRS030104 developmental biologyEndocrinologyPremenopauselihasmassaSarcopeniaCELLS3111 BiomedicineEnergy Metabolismfemale muscle030217 neurology & neurosurgeryskeletal musclesHormone
researchProduct

Longevity-related molecular pathways are subject to midlife “switch” in humans

2019

Emerging evidence indicates that molecular aging may follow nonlinear or discontinuous trajectories. Whether this occurs in human neuromuscular tissue, particularly for the noncoding transcriptome, and independent of metabolic and aerobic capacities, is unknown. Applying our novel RNA method to quantify tissue coding and long noncoding RNA (lncRNA), we identified ~800 transcripts tracking with age up to ~60 years in human muscle and brain. In silico analysis demonstrated that this temporary linear “signature” was regulated by drugs, which reduce mortality or extend life span in model organisms, including 24 inhibitors of the IGF‐1/PI3K/mTOR pathway that mimicked, and 5 activators that oppos…

0301 basic medicineAgingved/biology.organism_classification_rank.speciesMuscle Fibers SkeletallihaksetTranscriptome0302 clinical medicineGene expressionGene Regulatory NetworksRNA-Seqmedia_commonCerebral CortexNeuronsreactive oxygen speciesihoTOR Serine-Threonine Kinasesmitochondrial complex 1LongevityBrainNon-coding RNAAlzheimer'sECSITCell biologytranskriptio (biologia)mTORRNA Long NoncodingOriginal ArticleaivotSignal TransductionAdultTranscriptional ActivationskinIn silicomedia_common.quotation_subjectLongevityBiology03 medical and health sciencesHumanslong noncoding RNAskeletal muscleModel organismGeneSirolimusved/biologyagingRNACell BiologyTwins MonozygoticOriginal Articles030104 developmental biologyikääntyminenRNATranscriptome030217 neurology & neurosurgery
researchProduct

Palmitoylation is a post-translational modification of Alix regulating the membrane organization of exosome-like small extracellular vesicles.

2018

Abstract Background Virtually all cell types have the capacity to secrete nanometer-sized extracellular vesicles, which have emerged in recent years as potent signal transducers and cell-cell communicators. The multifunctional protein Alix is a bona fide exosomal regulator and skeletal muscle cells can release Alix-positive nano-sized extracellular vesicles, offering a new paradigm for understanding how myofibers communicate within skeletal muscle and with other organs. S-palmitoylation is a reversible lipid post-translational modification, involved in different biological processes, such as the trafficking of membrane proteins, achievement of stable protein conformations, and stabilization…

0301 basic medicineAlix (also known as PDCD6IP)Protein ConformationLipoylationLipid BilayersBiophysicsSkeletal muscle cellsCell Cycle ProteinsExosomesBiochemistryExosomeTetraspanin 29Cell Line03 medical and health sciencesExtracellular VesiclesPalmitoylationTetraspaninExtracellularHumansLipid bilayerMuscle SkeletalMolecular BiologyCells CulturedEndosomal Sorting Complexes Required for TransportChemistryVesicleCalcium-Binding ProteinsCell MembraneExtracellular vesicleTetraspaninSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Cell biologyExosomeProtein Transport030104 developmental biologyS-palmitoylationMembrane proteinextracellular vesicles (EVs)Skeletal muscle cellProtein Processing Post-TranslationalProtein BindingSignal TransductionBiochimica et biophysica acta. General subjects
researchProduct